Теорема Фалеса

Если стороны угла, пересекают прямые параллельные линии которые одну из сторон разделяют на несколько отрезков, то и вторую сторону, прямые так же разделят на равнозначны с другой стороной отрезки.

теорема Фалеса

Теорему Фалеса доказывает следующее: С1, С2, С3 — это места где пересекаются прямые параллельные на любой стороне угла. С2 находится посередине относительно С1 и С3.. Точки D1, D2, D3 — это места где пересекаются прямые, которые соответствуют прямым с другой стороной угла. Доказываем, что когда C1C2 = C2Cз, значит и D1D2=D2D3.
Проводим в месте D2 прямой отрезок КР, параллельный участку C1C3. В свойствах параллелограмма C1C2=KD2, C2C3= D2P. Если C1C2=C2C3, то и KD2=D2P.
доказательство фалеса

Полученные треугольные фигуры D2D1K и D2D3P равняются. И D2K=D2P по доказательству. Углы с верхней точкой D2 равняются как вертикальные, а углы D2KD1 и D2PD3 равняются как внутренние накрест лежащие при параллельных C1D1и C3D3 и разделяющей KP.
Так как D1D2=D2D3 теорема доказана по равенству сторон треугольника

Заметка:
Если взять не стороны угла, а два прямых отрезка, доказательство будет такое же.
Любые прямые отрезки параллельные друг другу, которые пересекают две рассматриваемые нами прямые и разделяющие одну из них на одинаковые участки, тоже самое делают и со второй.

Рассмотрим несколько примеров

Первый пример

Условием задания требуется разбить прямую СD на п одинаковых отрезков.
Проводим от точки С полу-прямую с, которая не лежит на прямой СD. Отметим на ней одинаковые по величине части. СС1, С1С2, С2С3 .....Сп-1Сп. Соединяем Сп с D. Проводим прямые от точек С12,....,Сп-1 которые будут параллельны относительно СпD. Прямые будут пересекать СD в местах D1 D2 D п-1 и разделять прямую СD на п одинаковых отрезков.


первый пример

Второй пример

На стороне АВ треугольника АВС отмечена точка СК. Отрезок СК пересекает медиану АМ треугольника в точке Р, при этом АК= АР. Требуется найти отношение ВК к РМ.
Проводим через точку М прямой отрезок, параллельный СК, который пересекает АВ в точке D

второй пример

По теореме Фалеса ВD=КD
По теореме пропорциональных отрезков получаем, что
РМ = КD = ВК/2, следовательно, ВК : РМ = 2:1
Ответ: ВК: РМ = 2:1

Третий пример

В треугольнике АВС, сторона ВС = 8 см. Прямая DE пересекает стороны АВ и ВС параллельно АС. И отсекает на стороне ВС отрезок ЕС = 4см. Доказать, что АD = DВ.

третий пример

Так как ВС = 8 см и ЕС = 4см, то
ВЕ = ВС-ЕС, следовательно, ВЕ = 8-4 = 4(см)
По теореме Фалеса, так как АС параллельна DE и ЕС = ВЕ то, следовательно, АD = DВ. Что и требовалось доказать.

В женском журнале - онлайн, Вы найдете много интересной информации для себя. Так же есть раздел, посвященный стихам которые написал Сергей Есенин. Заходите не пожалеете!


Если статья вам помогла, то будем рады получить вашу благодарность в виде пожертвования в фонд развития проекта.
Любую сумму на развитие проекта вы можете пожертвовать на данной странице.

Честно говоря вообще не пойму смысл в этой теореме, это же и так понятно и видно невооруженным глазом как говорится. Вот с тангенсами сложнее дело будет, тут явно высшие мозги нужны были, чтобы такое придумать))))


А так всегда, такие очевидные моменты надо теоремами доказывать))))))


По сути сама теорема простая, но по ней могут столько каверзных вопросов задать, вы себе даже не представляете!!!!! Я чуть было не попался.