Формулы сокращенного умножения

Для того что бы упростить алгебраические многочлены, существуют формулы сокращенного умножения. Их не так уж и много и они легко запоминаются, а запомнить их нужно. Обозначения которые используются в формулах, могут принимать любой вид (число или многочлен).

Формулы сокращенного умножения

Первая формула сокращенного умножения называется разность квадратов. Она заключается в том что из квадрата одного числа отнимается квадрат второго числа равен величине разности данных чисел, а также их произведению.


а2 - b2 = (а - b)(a + b)

Разберем для наглядности:

222 - 42 = (22-4)(22+4)=18 * 26 = 468
2 - 4b2c2 = (3a - 2bc)(3a + 2bc)

Вторая формула о сумме квадратов. Звучит она как, сумма двух величин в квадрате равняется квадрату первой величины к ней прибавляется двойное произведение первой величины умноженное на вторую, к ним прибавляется квадрат второй величины.

(а + b)2 = a2 +2ab + b2

Благодаря данной формуле, становится намного проще вычислять квадрат от большого числа, без использования вычислительной техники.

Так к примеру: квадрат от 112 будет равен
1) В начале разберем 112 на числа квадраты которых нам знакомы
112 = 100 + 12
2) Вписываем полученное в скобки возведенные в квадрат
1122 = (100+12)2
3) Применяя формулу, получаем:


1122 = (100+12)2 = 1002 + 2 * 100 * 12 + 122 = 10000 + 2400+ 144 = 12544

Третья формула это квадрат разности. Которая гласит о том, что две вычитаемые друг друга величины в квадрате равняются, тому что, от первой величины в квадрате отнимаем двойное произведение первой величины умноженное на вторую, прибавляя к ним квадрат второй величины.


(а +b)2 = а2 - 2аb + b2

где (а - b)2 равняется (b - а)2. В доказательство чему, (а-b)2 = а2-2аb+b2 = b2-2аb + а2 = (b-а)2

Четвертая формула сокращенного умножения называется куб суммы. Которая звучит как: две слагаемые величины в кубе равны кубу 1 величины прибавляется тройное произведение 1 величины в квадрате умноженное на 2-ую величину, к ним прибавляется тройное произведение 1 величины умноженной на квадрат 2 величины, плюс вторая величина в кубе.

(а+b)3 = а3 + 3а2b + 3аb2 + b3

Пятая, как вы уже поняли называется куб разности. Которая находит разности между величинами, как от первого обозначения в кубе отнимаем тройное произведение первого обозначения в квадрате умноженное на второе, к ним прибавляется тройное произведение первого обозначения умноженной на квадрат второго обозначения, минус второе обозначение в кубе.


(а-b)3 = а3 - 3а2b + 3аb2 - b3

Шестая называется - сумма кубов. Сумма кубов равняется произведению двух слагаемых величин, умноженных на неполный квадрат разности, так как в середине нет удвоенного значения.


а3 + b3 = (а+b)(а2-аb+b2)

По другому можно сказать сумму кубов можно назвать произведение в двух скобках.

Седьмая и заключительная, называется разность кубов (ее легко перепутать с формулой куба разности, но это разные вещи). Разность кубов равняется произведению от разности двух величин, умноженных на неполный квадрат суммы, так как в середине нет удвоенного значения.


а3 - b3 = (а-b)(а2+аb+b2)

И так формул сокращенного умножения всего 7, они похожи друг на друга и легко запоминаются, единственно важно не путаться в знаках. Они так же рассчитаны на то, что их можно использовать в обратном порядке и в учебниках собрано довольно много таких заданий. Будьте внимательны и все у вас получится.

Если у вас появились вопросы по формулам, обязательно пишите их в комментариях. Будем рады ответить вам!

Если Вы находитесь в декретном отпуске, но хотите зарабатывать деньги. Просто перейдите по ссылке Интернет бизнес с Орифлейм. Там все очень подробно написано и показано. Будет интересно!


Если статья вам помогла, то будем рады получить вашу благодарность в виде пожертвования в фонд развития проекта.
Любую сумму на развитие проекта вы можете пожертвовать на данной странице.

Не путаться в знаках получается с трудом конечно, но наш преподаватель это уже понял и не сильно мне бал снижает. Видно, что формулу помню, а знаки путаю. Вместо тройки четыре иногда ставит.


Эти формулы очень простые, вы видно мало ними пользуетесь. Я их даже не учила, просто на практике запомнились, теперь даже не нужны а помню все равно)))


Согласен с Линейкой на все сто. Даже я запомнил, хотя у меня память ужасная!


Я себе эти формулы сокращенного умножения на всех тетрадках и учебниках писал, и только когда они уже были не нужны понял что наконец их наизусть выучил.