Онлайн калькулятор
Решение матриц
Конвертор величин
Решение кв. уравн.
Таблица Брадиса
Тригоном. таблицы
Тесты и игры
Решить задачу
Таблица производных
Калькулятор дробей
Фонетический разбор
Редактор формул
Прежде чем рассказать о вычислении пределов с неопределенностью, хочется верить, что у вас уже есть понимание того, что такое предел и как вычислить элементарные пределы. Если такого понимания нет, то сначала прочитайте статью "Пределы. Понятие пределов. Вычисление пределов".
Теперь перейдем к рассмотрению пределов с неопределенностью.
Существует группа пределов, когда x , а функция представляет собой дробь, подставив в которую значение х = получим неопределенность вида .
Пример.
Необходимо вычислить предел
Воспользуемся нашим правилом №1 и подставим в функцию. Как видно мы получаем неопределенность .
В числителе находим х в старшей степени, которая в нашем случае = 2:
То же самое проделаем со знаменателем:
Здесь также старшая степень = 2.
Далее надо из двух найденных степеней выбрать самую старшую. В нашем случае степень числителя и знаменателя совпадают и =2.
Итак, для раскрытия неопределенности нам потребуется разделить числитель и знаменатель на х в старшей степени, т.е. на x2:
Ответ: 2/3.
Существуют также пределы с другой неопределенностью - вида . Отличие от предыдущего случая лишь в том, что х стремится уже не к , а к конечному числу.
Пример.
Необходимо вычислить предел .
Снова воспользуемся правилом №1 и подставим в место х число -1:
Мы получили неопределенность , для раскрытия которой необходимо разложить числитель и знаменатель на множители, для чего в свою очередь обычно решается квадратное уравнение или используются формулы сокращенного умножения.
В нашем случае решаем уравнение:
Находим дискриминант:
.
Если корень не извлекается целый вероятней всего D вычислен неправильно.
Теперь находим корни уравнения:
Подставляем:
Числитель разложили.
В знаменателе у нас х + 1, что итак является простейшим множителем.
Тогда наш предел примет вид:
х + 1 красиво сокращается:
Теперь подставим вместо х значение -1 в функцию и получаем:
2*(-1) – 5 = -2 – 5 = -7
Ответ: -7.
Рассмотрим основные положения, применяемые при решении различного рода задач с пределами:
На этом с вычислением пределов с неопределенностью всё. Еще в статье "Замечательные пределы: Первый и второй замечательный предел" мы отдельно рассматриваем интересную группу пределов. Статья вставит еще один блок для решения большинства пределов, встречающихся не просторах обучения.
Заметка: Если не хватает времени на учебу, вы можете заказать контрольную работу (http://forstuds.ru/kontrolnaya-rabota-na-zakaz), учтите правда наличие знаний по теме у вас после этого.
Вот с фразы "Воспользуемся нашим правилом №1" поподробнее пожалуйста. У вас есть отдельный список таких правил? Хочу себе сделать как бы карманный мини справочник, чтобы всегда был под рукой.
Я так и не понял как вы числитель разложили, будто колоду карт раскидали и все)