Онлайн калькулятор
Решение матриц
Конвертор величин
Решение кв. уравн.
Таблица Брадиса
Тригоном. таблицы
Тесты и игры
Решить задачу
Таблица производных
Калькулятор дробей
Фонетический разбор
Редактор формул
Интегралы и их решение многих пугает. Давайте избавимся от страхов и узнаем, что это такое и как решать интегралы!
Интеграл – расширенное математическое понятие суммы. Решение интегралов или их нахождение называется интегрированием. Пользуясь интегралом можно найти такие величины, как площадь, объем, массу и другое.
Решение интегралов (интегрирование) есть операция обратная дифференцированию.
Чтобы лучше представлять, что есть интеграл, представим его в следующей форме. Представьте. У нас есть тело, но пока не можем описать его, мы только знаем какие у него элементарные частицы и как они расположены. Для того, чтобы собрать тело в единое целое необходимо проинтегрировать его элементарные частички – слить части в единую систему.
В геометрическом виде для функции y=f(x), интеграл представляет собой площадь фигуры ограниченной кривой, осью х, и 2-мя вертикальными линиями х=а и х=b .
Основные приемы решения интегралов:
Решить интеграл, значит проинтегрировать функцию по переменной. Если интеграл имеет табличный вид, то можно сказать, что вопрос, как решить интеграл, решен. Если же нет, то основной задачей при решении интеграла становиться сведение его к табличному виду.
Сначала следует запомнить основные свойства интегралов:
Знание только этих основ позволит решать простые интегралы. Но следует понимать, что большинство интегралов сложные и для их решения необходимо прибегнуть к использованию дополнительных приемов. Ниже мы рассмотрим основные приемы решения интегралов. Данные приемы охватывают большую часть заданий по теме нахождения интегралов.
Также мы рассмотрим несколько базовых примеров решения интегралов на базе этих приемов. Важно понимать, что за 5 минут прочтения статьи решать все сложные интегралы вы не научитесь, но правильно сформированный каркас понимания, позволит сэкономить часы времени на обучение и выработку навыков по решению интегралов.
1. Замена переменной.
Для выполнения данного приема потребуется хороший навык нахождения производных.
2. Интегрирование по частям. Пользуются следующей формулой.
Применения этой формулы позволяет казалось бы нерешаемые интегралы привести к решению.
3. Интегрирование дробно-рациональных функций.
- разложить дробь на простейшие
- выделить полный квадрат.
- создать в числителе дифференциал знаменателя.
4. Интегрирование дробно-иррациональных функций.
- выделить под корнем полный квадрат
- создать в числителе дифференциал подкоренного выражения.
5. Интегрирование тригонометрических функций.
При интегрировании выражений вида
применяет формулы разложения для произведения.
Для выражений
m-нечетное, n –любое, создаем d(cosx). Используем тождество sin2+cos2=1
m,n – четные, sin2x=(1-cos2x)/2 и cos2x=(1+cos2x)/2
Для выражений вида:
- Применяем свойство tg2x=1/cos2x - 1
С базовыми приемами на этой всё. Теперь выведем своего рода алгоритм:
Алгоритм обучения решению интегралов:
Пример 1:
Решить интеграл:
Интеграл неопределенный. Находим первообразную.
Для этого интеграл суммы разложим на сумму интегралов.
Каждый из интегралов табличного вида. Смотрим первообразные по таблице.
Решение интеграла:
Проверим решение(найдем производную):
Пример 2. Решаем интеграл
Интеграл неопределенный. Находим первообразную.
Сравниваем с таблицей. В таблице нет.
Разложить, пользуясь свойствами, нельзя.
Смотрим приемы. Наиболее подходит замена переменной.
Заменяем х+5 на t5. t5 = x+5 . Получаем.
Но dx нужно тоже заменить на t. x= t5 - 5, dx = (t5 - 5)’ = 5t4. Подставляем:
Интеграл из таблицы. Считаем:
Подставляем в ответ вместо t ,
Решение интеграла:
Пример 3. Решение интеграла:
Для решения в этом случае необходимо выделить полный квадрат. Выделяем:
В данном случае коэффициент 1/2 перед интегралом получился в результате замены dx на 1/2*d(2x+1). Если вы найдете производные x’ = 1 и 1/2*(2x+1)’= 1, то поймете почему так.
В результате мы привели интеграл к табличному виду.
Находим первообразную.
В итоге получаем:
Для закрепления темы интегралов рекомендуем также посмотреть видео.
В нем мы на примере физики показываем практическое применение интегрирования, а также решаем еще несколько задач.
Надеюсь вопрос, как решать интегралы для вас прояснился. Мы дорабатываем статью по мере поступления предложений. Поэтому если у вас появились какие то предложения или вопросы по теме решения интегралов, пишите в комментариях.
Рекламная заметка: Для особо пытливых умов советуем
Такое описание! Даже я разобрался, спасибо)
через час идти на зачет а я так и не понял(
Матан матан...Как много в этом слове...
Ща глянем че тут!!!!=))
не училась в инсте еще, но теперь и не страшно.. достаточно просто) единственное - путаюсь в обозначениях, чтоб их
да понту нет от этой статьи ну да стало понятно что из себя представляет интеграл , но не больше, это то же самое что в авто школе учили бы устройству машины но не учили бы на ней ездить ( а вы:"ООО ништяк я знаю как работает машина уху я все теперь понял") я могу без стыда заявить что я нихрена не понимаю как их ршать и не считаю что это как то стремно была бы статья в ЕЩЕ болие понятном формате было бы здорово, и тут люди уже говорили про примеры, вот их то и не хватает, большинство только в поисках примеров натыкается на этот сайт а тут их нету!=) ладно интернет большой может что нибудь да найду=)
примеры решения интегралов добавлены.
Спасибо за комментарий.
Спасибо за статью, в учебниках такая дребедень написана! Мол, вот тут напишите такЭ\, здесь и так всё понятно, вот вам всё решение, без объяснений!
теперь я хотя бы поняла, что вообще такое интегралы, т.е. саму суть поняла. И таблица очень хорошая, полная.
Нам в институте не хрена их необьяснили скоро экзамен я в этом нуб он трындит на меня что делать ?выы типо должны всё сами искать и учить остальное дело за вами . я нах в иститут шел учится так учите нет они опять за своё
Ну таков путь к познанию, так сказать научный поиск... Изыскание если хочешь... Привыкай, искать истину ) В институтах учатся учёные будущие
Большое человеческое Спосибо..
Учебники не воспринемаю а тут всё ясно написано доступным языком.
бооольшое спасибо оч помогло до прочтения вообще не понимал что это и как решать =)
мде)))) нечего не понял)) а завтра тест))) ну и хрен сним)) спс))
СПАСИБО! этот сайт помог наконец то врубиться в матан! ппц я счастлив =))
хах :)
Спасибо огромное :))
Теперь я точно пересдам экзамен.. раза с 8го... :D
Не понял, печально, уже не знаю, как мне с этим разобраться
Спасибо но мне ща больше поможет какое нибудь чудо чем эта информация(((((((((((((
Статья хороша, написана доходчиво.
Одно плохо - грамматика страдает. Глаголы "сводиться" и "становиться" пишутся БЕЗ "Ь". Проверка - что делает?, т.е. "сводится" и "становится ". Становиться в очередь (что делать?), а преобразуется - становится.
Господи, половина инета пишет с этой ошибкой.
Это конечно всё здорово, но я ничего не понял как решать интеграл... Что и куда подставлять... Как решать их.... Хоть бы кто добавил подробный описанный и илюстрированный пример.... А лучше несколько примеров.... А-то не то, что с 8-го... С 126-го раза люди не сдадут предмет...
примеры решения интегралов добавили. статью немного расширили.
теория хорошая, я тоже поняла с чем едят интеграл, но все же как его находить, если например он рациональный? там надо применять всякие А В С Д и все такое (это не сложно) но дальше
Супер! Очень доступно! Спасибо огромное!
пример на площадь не очень, не могли бы вы переделать его с линейной функцией y=x, а то так слишком просто.
Читал... читал... И не понял( Завтра контрольная, и в голове пусто. Хоть бы решение было. От одной теории мне толку очень мало
пффф, чтоб я здох. Пора сапогичистить учится(((
Жаль что я не парень xD
Нащёт интегр. по частям, дробно-рацион. и дробно-иррациональных интегр. не вкупил, а так впринципе доходчиво
Отличные таблицы!Спасибо за повторение))
Теперь хоть сессию на 1 курсе закрою))
Мило. По крайней мере ясно, как решать интеграл
это все конечно хорошо)) но неплохо было бы и примеры решения и обьяснения подробного по больше
примеры решения добавили. спасибо за пожелания
Надо же! До меня дошло!!! от души благодарен!
НИ ХЕРА НЕ ПОНЯТНО (
ПОЛНОСТЬЮ СОГЛАСЕН!!!
Как решать интегралы, и что они в принципе обозначают - объясненно доходчиво.
Непонятно другое: нафига так усложнять решения, если прекрасно все решается и без интегралов.
Возьмем ту же задачу с площадью. Если мы ограничили площадь высотой 3 (y=3), а ширину - 1 (x=2-1=1), то решение задачи с площадью S= 3*(2-1)=3. И оно решается, записывается и воспринимается намного проще чем через интеграл. И совершенно не обязательно даже строить график функции.
То есть в случае с интегралом мы производим массу никому не нужных записей и просто усложняем себе жизнь.
Напрашивается вывод - интегралы нахрен никому не нужны. Хотелось бы увидеть ту задачу, которую проще было бы решить при помощи интеграла, чем обычными простыми способами.
показали бы еще решение несобственных интегралов, это главная запара(((
ниХера! В математики я полный НолЬ!!!
в русском языке тоже.
Задача с прямоугольником дана для пояснения сути интеграла. Площади же (или объёмы) сложных фигур без использования интеграла точно вычислить не получится. В самом начале статьи показан график криволинейной трапеции. Так вот, можно отсечь от него прямоугольник и легко найти его площадь. А как быть с той волнистой частью? Как раз для таких неудобных случаев и применяют интеграл.
Ага, а ты возьми какую-нибудь невъебическую функцию построй ее график и посчитай площадь фигуры без интеграла, а я посмеюсь! ))))
Добростатья. Все понятно, на пальцах даже написано, можно сказать. Огромное спасибо!
да дружище,конечно спасибо,но все же тут хер че поймешь и теперь я еще больше стал их ненавидеть
Ну вроде понятно... Завтра экзамен... Вот примеров бы побольше не помешало точно..
В школе не задумывалась над тем нафиг это нужно,решала и всё. Сейчас снова столкнулась спустя почти 30 лет и обалдеваю от этих заворотов. Порывшись в своих школьных тетрадях понимаю,что тогда тоже был завал,потому ничерта понять не могу - голова пухнет от этого "дурдома",а зачёт сдать надо.(
Для меня не полностью все же решился вопрос по решению интегралов. Было бы интереснее послушать еще и каким образом уравнение формируется и в каких случаях. Так есть стереотип и стандарт.
Для меня не полностью все же решился вопрос по решению интегралов. Было бы интереснее послушать еще и каким образом уравнение формируется и в каких случаях. Так есть стереотип и стандарт.
Получается, что решение интегралов это совмещение несовместимого и деление того, что в принципе сложно было бы сделать, но именно при помощи интергальной системы и становится все вполне реально найти ответы.
Решение интегралов может объяснено и доходчиво, только сами интегралы для меня какие то не доходчивые. Сколько над ними не бьюсь, ничего не получается.
Большая просьба к автору статьи как можно больше примеров привести с решениями, которые используются на зачетах и экзаменах. Понять то я вроде бы и понял, но хотелось бы как можно больше примеров рассмотреть, основные свойства интегралов я конечно вызубрил, но не могу сказать что правильно смогу все свои знания применить.
А я вот ничего совершенно не понял. Вроде бы простейший пример с прямоугольником, а все равно не понятно. Наверное необходимо более ранние азы математики наверстывать, чтобы потом и этот материал быстро усвоился.