Онлайн калькулятор
Решение матриц
Конвертор величин
Решение кв. уравн.
Таблица Брадиса
Тригоном. таблицы
Тесты и игры
Решить задачу
Таблица производных
Калькулятор дробей
Фонетический разбор
Редактор формул
Интегралы и их решение многих пугает. Давайте избавимся от страхов и узнаем, что это такое и как решать интегралы!
Интеграл – расширенное математическое понятие суммы. Решение интегралов или их нахождение называется интегрированием. Пользуясь интегралом можно найти такие величины, как площадь, объем, массу и другое.
Решение интегралов (интегрирование) есть операция обратная дифференцированию.
Чтобы лучше представлять, что есть интеграл, представим его в следующей форме. Представьте. У нас есть тело, но пока не можем описать его, мы только знаем какие у него элементарные частицы и как они расположены. Для того, чтобы собрать тело в единое целое необходимо проинтегрировать его элементарные частички – слить части в единую систему.
В геометрическом виде для функции y=f(x), интеграл представляет собой площадь фигуры ограниченной кривой, осью х, и 2-мя вертикальными линиями х=а и х=b .
Основные приемы решения интегралов:
Решить интеграл, значит проинтегрировать функцию по переменной. Если интеграл имеет табличный вид, то можно сказать, что вопрос, как решить интеграл, решен. Если же нет, то основной задачей при решении интеграла становиться сведение его к табличному виду.
Сначала следует запомнить основные свойства интегралов:
Знание только этих основ позволит решать простые интегралы. Но следует понимать, что большинство интегралов сложные и для их решения необходимо прибегнуть к использованию дополнительных приемов. Ниже мы рассмотрим основные приемы решения интегралов. Данные приемы охватывают большую часть заданий по теме нахождения интегралов.
Также мы рассмотрим несколько базовых примеров решения интегралов на базе этих приемов. Важно понимать, что за 5 минут прочтения статьи решать все сложные интегралы вы не научитесь, но правильно сформированный каркас понимания, позволит сэкономить часы времени на обучение и выработку навыков по решению интегралов.
1. Замена переменной.
Для выполнения данного приема потребуется хороший навык нахождения производных.
2. Интегрирование по частям. Пользуются следующей формулой.
Применения этой формулы позволяет казалось бы нерешаемые интегралы привести к решению.
3. Интегрирование дробно-рациональных функций.
- разложить дробь на простейшие
- выделить полный квадрат.
- создать в числителе дифференциал знаменателя.
4. Интегрирование дробно-иррациональных функций.
- выделить под корнем полный квадрат
- создать в числителе дифференциал подкоренного выражения.
5. Интегрирование тригонометрических функций.
При интегрировании выражений вида
применяет формулы разложения для произведения.
Для выражений
m-нечетное, n –любое, создаем d(cosx). Используем тождество sin2+cos2=1
m,n – четные, sin2x=(1-cos2x)/2 и cos2x=(1+cos2x)/2
Для выражений вида:
- Применяем свойство tg2x=1/cos2x - 1
С базовыми приемами на этой всё. Теперь выведем своего рода алгоритм:
Алгоритм обучения решению интегралов:
Пример 1:
Решить интеграл:
Интеграл неопределенный. Находим первообразную.
Для этого интеграл суммы разложим на сумму интегралов.
Каждый из интегралов табличного вида. Смотрим первообразные по таблице.
Решение интеграла:
Проверим решение(найдем производную):
Пример 2. Решаем интеграл
Интеграл неопределенный. Находим первообразную.
Сравниваем с таблицей. В таблице нет.
Разложить, пользуясь свойствами, нельзя.
Смотрим приемы. Наиболее подходит замена переменной.
Заменяем х+5 на t5. t5 = x+5 . Получаем.
Но dx нужно тоже заменить на t. x= t5 - 5, dx = (t5 - 5)’ = 5t4. Подставляем:
Интеграл из таблицы. Считаем:
Подставляем в ответ вместо t ,
Решение интеграла:
Пример 3. Решение интеграла:
Для решения в этом случае необходимо выделить полный квадрат. Выделяем:
В данном случае коэффициент 1/2 перед интегралом получился в результате замены dx на 1/2*d(2x+1). Если вы найдете производные x’ = 1 и 1/2*(2x+1)’= 1, то поймете почему так.
В результате мы привели интеграл к табличному виду.
Находим первообразную.
В итоге получаем:
Для закрепления темы интегралов рекомендуем также посмотреть видео.
В нем мы на примере физики показываем практическое применение интегрирования, а также решаем еще несколько задач.
Надеюсь вопрос, как решать интегралы для вас прояснился. Мы дорабатываем статью по мере поступления предложений. Поэтому если у вас появились какие то предложения или вопросы по теме решения интегралов, пишите в комментариях.
Рекламная заметка: Для особо пытливых умов советуем
После многочисленных неудачных попыток понял одну вещь, садится решать интегралы без валидола нельзя. Человеческая психика не способна это выдержать самостоятельно!!!!!1
Решение интегралов либо дано природой либо нет, мне вот лично не дано((((((
3й пример не правильный, 4x^2+4x+5=(2x+1)^2+4
Тут всё ясно, нужно посидеть и подумать. А попробуйте решить задачи по физике с интегралами... В особенности теоретические основы электротехники, там загнуться можно про излучения и оптику вообще молчу :))))
В третьем примере ошибка в выделении полного квадрата.
в третьем примере разве полный квадрат не (2Х+2) в квадрате?
Здравствуйте. Спасибо за объяснение, однако, кажется Вы совершили ошибку в расчетах.
В последнем примере, когда происходит выделение полного квадрата, будет (2х+1)^(2) +4, а не (2х+1)^(2) +1. Потому, как 4x^2 +4x+5=(4x^2 +4x+1)-1+5=(2х+1)^(2) +4
Спасибо огромное за статью!;) все по полочкам разложили,все понятно и доступно. Кто не понял прочитав все досканально и вдумчиво увы ум не под это заточен. Здесь осталось только применить алгоритм и тренироваться для вычисления первообразных. Удачи обучающимся и автору;)
спасибо, понятно.
А в третьем примере разве (2x+1)^2 будет? вроде двоечка должна быть вместо единицы.
при выделении полного квадрата опечатка,или же я совсем 0 в математики,
за скобками должно быть (...)+ 4 вместо(...)+1
Очень доступно изложено, только в самом конце решения последнего примера не вижу, чтобы был учтён полученный до этого при замене переменной дифференциала в числителе коэффициент 1/2 (объяснение происхождения которого тоже присутствует).
Третий пример решен не правильно,не так выделен полный квадрат!
Т.е. вот у меня пример, интеграл 2;-2(3х^2-2х^3dx)
Я должна, подставить так?-(3×2^2-2×(-2)^3)?
Из этого выходит 12-(-16)=28.
Так?